PROPERTIES OF M40J CARBON/PMR-II-50 COMPOSITES FABRICATED WITH DESIZED AND SURFACE TREATED FIBERS Ronald E. Allred*, Jan M. Gosau*, E. Eugene Shin**, Linda S. McCorkle**, and James K. Sutter**, Michelle O'Malley***Abstract To increase performance and durability of high temperature composites for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high temperature polyimide resins. It has been previously demonstrated that the electro-oxidative shear treatments used by fiber manufacturers are not effective on higher modulus fibers that have fewer edge and defect sites in the surface crystallites. In addition, sizings commercially supplied on most carbon fibers are not compatible with polyimides. This study was an extension of prior work characterizing the surface chemistry and energy of high modulus carbon fibers (M40J and M60J, Torray) with typical fluorinated polyimide resins, such as PMR-II-50. . A continuous desizing system which utilizes environmentally friendly chemical-mechanical processes was developed for tow level fiber and the processes were optimized based on weight loss behavior, surface elemental composition (XPS) and morphology (FE-SEM) analyses, and residual tow strength of the fiber, and the similar approaches have been applied on carbon fabrics. Both desized and further treated with a reactive finish were investigated for the composite reinforcement. The effects of desizing and/or subsequent surface retreatment on carbon fiber on composite properties and performance including fiber-matrix interfacial mechanical properties, thermal properties and blistering onset behavior will be discussed in this presentation. - * Adherent Technologies, Inc., Albuquerque, NM (<u>Rallred@adherent-tech.com</u>, Jgosau@adherent-tech.com) - ** NASA Glenn Research Center, Cleveland, OH (<u>E. Eugene.Shin@grc.nasa.gov, Linda.S.McCorkle@grc.nasa.gov, James.K.Sutter@grc.nasa.gov</u>) - *** Summer Intern at NASA Glenn Research Center, Chemical/Biomedical and Health Engineering, Carnegie Mellon University This is a preprint or reprint of a paper intended for presentation at a conference. Because changes may be made before formal publication, this is made available with the understanding that it will not be cited or reproduced without the permission of the author. | | |
 | |---|--|------| , | ### Desized and Finished Fibers Characterization of M40J Ronald E. Allred and Jan-M. Gosau Adherent Technologies, Inc. Albuquerque, NM and Michelle O'Malley, James K. Sutter, & Don Wheeler E. Eugene Shin, Linda McCorkle, NASA Glenn Research Center Cleveland, OH ### Adherent Technologies, Inc. ## Presentation Outline Continuous Desizing and Finishing System Development Characterization of Desized and Finished M40J Carbon Fibers Conclusions and Future Work ### — Adherent Technologies, Inc. — Adherent Technologies, Inc. — ## Problem Statement - unusual combination of stiffness and strength for use in high-temperature Toray M40J carbon fibers have an structural applications - optimized for compatibility with high- Epoxy sizes on these fibers are not temperature polymers ## FY 00 Technical Approach - Compare sized and chloroform desized (5 min.) fibers: - > surface chemistry by XPS - > surface energy by wetting - > topography by SEM - Characterize PMR-II-50 resin: - > surface energy by wetting - > surface chemistry by XPS #### A STATE OF THE PARTY PAR ## Program Objective between interfacial measurements and To search for empirical correlations develop effective high-temperature composite performance in order to surface treatments. ### Toray Sized M40J ## Toray M40J Desized ### Wetting Results - 1. Sized and desized surfaces are energetically and topographically heterogeneous - surfaces and M60J surfaces display similar 2. Formamide wetting shows that M40J acidity whether sized or desized. - covers basic functionality that is uncovered 3. Ethylene glycol wetting suggests that size by desizing - 4. PMR-II-50 resin is mildly amphoteric, since Wa-b is small but finite for both acid-base probe liquids ### XPS Analysis Toray M40J carbon fiber # XPS Elemental Analysis - M40J Carbon *Fibers* Sized Desized 39.8 **C-C** 70.4 13.3 34.4 O-0% 2.1 0.9 23.7 15.3 %C-OO %01s ## FY 00 Conclusions - Toray size coverage is very nonuniform - groups, and shows slightly acidic character Size contains predominantly hydroxyl - clean fiber with small nodules of residual Desizing in hot chloroform leaves mostly Size - Desized fiber surface is amphoteric with 12-15% oxygen moieties ### — Adherent Technologies, Inc. — $\underbrace{FY00}$ ## FY 00 Conclusions (concluded) - PMR-II-50 resin also amphoteric - Toray fibers highly striated - surface treatment to remove residual size require better sizing removal and/or High-temperature applications will - should be receptive to surface treatments Previous work on unsized fiber indicates that the desized Toray fiber surface and finishes ## FY 01 Program Goals - Determine Operating Parameters for Continuous Desizing Line on M40J - Fabricate continuous desizing unit with in-line finishing capability - ➤ Characterize resultant fibers - finished fibers for composite fabrication ▶ Produce large batches of desized and - Fabricate and test unicomposites for interfacial adhesion ### ~ Adherent Technologies, Inc. ~ ### M40J Carbon Fiber Residual Size after 60 sec Chloroform Soak ## Desizing/Finishing System - out of tank containing 25 cm dia wheel 7 meter long 2 cm dia steel tube in and - * filled with heated chloroform - * tension controlled feed and take up at 1.6 meters/minute - in-line drying furnace and finishing bath - added ultrasonic transducer to return tank ### Adherent Technologies, Inc. — App ## Appearance of Continuous Desized M40J Carbon Fibers ### Continuously Desized w/Ultrasound Appearance of M40J Carbon ## Desizing Intermediate Stage ### Adherent Technologies, Inc. — High I ### High Magnification of Desizing Intermediate Stage ~~ Adherent Technologies, Inc. ~~ ### High Magnification Appearance of M40J Carbon Continuously Desized ### ~~ Adherent Technologies, Inc. ~~ ## XPS Elemental Analysis Large Batch M40J Carbon Fibers | ر
% | 90.4 | 88.2 | 85.9 | |--------|------|------|------| | | | | | | 0% | 9.6 | 11.9 | 14.1 | | | | | | | CLIOIL | | | | | 88.8 | 89.5 | |------|-----------------| | | · · | | 11.2 | 10.5 | | | | 3 87.0 ### — Adherent Technologies, Inc. — Adherent Technologies, Inc. — Reac ## Reactive Finish Formulation . ATI 9307 Reactive Coupling Agent (0.3%) R, R' = proprietary functional groups 2. PMR-II-50 Polyimide (3.0%) 3. Acetone ### Appearance of Finished M40J -- Adherent Technologies, Inc. -- ## Survey XPS Spectrum of Finished M40J Carbon Fiber --- Adherent Technologies, Inc. -- # Finished Fiber Survey Spectrum after 1 Hour Methanol Wash ### XPS Elemental Analysis Finished M40J Carbon Fibers | Element | % As Finished | %After MeOH
Wash | PMR-II-50 | |---------|---------------|---------------------|-----------| | | 16.2 | 14.0 | 18.1 | | | 2.9 | 4.0 | 5.5 | | | 68.4 | 71.0 | 66.1 | # Mechanical Properties of M40J Tows | Test S | Test Specimen | Denier (g/9000m) | 00m) | Dry Tow Tensile Testing* | nsile Testii | ng* | | | Toray Data** | | |---------------|----------------------------|-----------------------|----------|--------------------------|-------------------------|-----------------------|------------------|---|-----------------|---------------------| | Fiber
Type | Fiber Conditioning
Type | Calc.
(Toray data) | Measured | Max. Load
Kg | Tenacity/7
g/d | Tensile Str
ksi*** | rength
% drop | rength Strain-to Str
% drop Failure, % ksi | Strength
ksi | Failure
Strain % | | | As-received/Control | 2025 | 2048 | | 57 ±6 12.8 ±1.4 | 290 ±32 | | 0.7 ±0.1 | 09 | 1.20 | | M40JB
6K | De-sized | | 1629 | | 37 ±3 10.2 ±0.7 231 ±16 | 231 ±16 | 20% | 0.6 ±0.0 | | | | | De-sized+Re-finished | | 2016 | | 47 ±5 10.6 ±1.1 | 240 ±25 | 17% | 0.7 ±0.1 | | | | | | | | | | | | | | | | M60JB
6K | As-received/Control | 1856 | 1597 | 44 ±4 | 44 ±4 10.8 ±1.1 245 ±25 | 245 ±25 | 16% | 0.6 ±0.0 | 590 | 0.70 | | H C T | | | | | | | | | | | * ASTM D885; 10 in nip-to-nip gage length; 12 in/min Cross-head Speed; Untwisted; 10 repeat tests for the mean values and standard ** TY-0030B-01: Properties of tow which has been resin-impregnated and then cured w/ Bakelite ERL 4221 epoxy resin fr Union Carbide. *** Conversion formular from g/d to psi: $psi = g/d \times density \times 12,791$ ## FY 01 Conclusions - desizing line reduced residual size to a Addition of ultrasound to continuous few submicron particles - M40] fiber structure highly irregular with significant (10-15%) oxygen - polyimide coats fibers uniformly and chemically bonds to the fiber surface Reactive finish containing PMR-II-50 ### Adherent Technologies, Inc. # (4) Program Status and Future Work - desized/finished M40J fibers produced for unicomposite fabrication Quantities of desized and - moisture resistance testing will be In FY 02, thermomechanical and conducted - Fiber treatment to be optimized based on program results - Fabric composites to be evaluated with similar approach